
1

2

Table of contents

Overview​ – pg.3

Purpose​ – pg.4

RC Car

 Choosing the right car – ​pg.4 – 5

Making the motors work – ​pg.5 – 6

Relays – pg.7 ​– 8

Distance Sensor/Buzzer – ​pg.8 – 9

Finishing the car – ​pg.9 – 10

Remote Controller

 Making the remote​ – pg.10 – 11

How IR Signaling Works​ – pg.11

Final Remote​ – pg.12

Problems that we encountered​ – pg.12 – 14

Thoughts about expansion​ – pg.14

Other/similar works of interest​ – pg.15

References ​– pg.16

3

Overview

The goal of our project was to take an existing RC car, remove any components that

controlled the RC car and replace them with our own. By doing this we can make the car

“smarter” because we can add our own sensors, and have finer control of how fast we want to go.

Then we can also create an “off” button that stops the RC car when something happens , for

example when it reaches a wall.

4

Purpose

 The purpose of our project was to implement a unique type of RC car which uses IR

signals to be transmitted from a remote wirelessly to the RC car. We wanted to make our own

remote, and our own RC car.

The RC Car

Starting out the RC car, we knew the best approach

would be to go based off an existing platform. We didn’t

want to worry about wheels falling off or the frame breaking

due to poor construction on our part. So the first phase of our

project was to find a good framework for the RC car, and

after asking around I was able to find 3 candidates (one of them was in a very poor state so it

wasn’t even considered for this project.)

The yellow pickup truck

 So the first I started working on was this

yellow pickup truck. After getting it open I was

able to see how it functioned. The one thing that

came quickly apparent was that it ​only used one motor to spin two of the back wheels​. The car

was able to backwards and forwards on that one motor,

but this was a huge drawback. The upside was that the

tires were able to spin at a reasonably low voltage, and

the simple design could offer benefits. At this point, I

5

was curious to see how the other car worked. So for now I put the yellow pickup aside, and

focused on the other RC car.

 The blue car

The other RC car was much

better laid out, as inside there was

clearly two motors. I proceeded to

taking out the internals by desoldering

them. So all that was left was the car

with just the wires to the motors. Also the battery bank that came with it could

easily be used to power the motors later down the line. Now that we had a good foundation to

work on, we can focus on the other details of the car.

Making the motors work

Before we proceed to make the motors work, we wanted to see the best ways to make

them work. First I found a guide on how to change speed via

serial input, and make it into a analog output on the motor,

which would be great since we would be able to control the

speed. [Motors 2]

After looking around a bit online, I found a great

resource about how to make my new transistor work. [Motors 3] I used only the diagram from

this website, as most of the code was only used as digital output and

didn’t use serial. What happened next? It worked perfectly! I could

run on 12V from my power supply, and worked well even with the 5

6

V. I think it might have been the high amps that caused this issue in the first place. So at this

point in time, I can receive serial line input, and control a motor. This can be easily done for two

motors, so the foundation for how to control the RC car has been made.

Since we want to have forward/backwards ability, and turning ability using two motors

we must figure out how to do it. For us, the car can go in both directions, since the motors can

both go forward or backwards. The car’s motors are color coded. The car has two cables, green

and blue, and depending on which ones I apply the voltage. Say I apply 5 volts to green and

ground to blue, the wheels will spin forward. I was thinking of using 4 different transistors to

control the speed for the motors, which would probably work really well, but since I only had

this one, and since the way the remote will be designed, I

decided to only keep one which will determine the speed, and

then have 4 relays instead.

 The transistor had a similar layout but now looked

more like the picture on the right. Later on we got rid of the

potentiometer to determine the speed and rather kept a single speed, since the potentiometer

created problems for both the remote and the RC car it self.

7

Relays

We made the decision to work with relays instead of the

controllers that were in the example codes since relay modules are

much cheaper, and are easily workable with, and made sure we don’t

have to concern ourselves with how much power is being delivered. So I made sure to buy a

relay module of 4 (since each wheel needs two) and made

sure that the rating for voltage/amps is higher than what we

required, as I didn’t want anything to blow up like it had

earlier with the transistor. The way the relays work are by

changing the polarity of the motor. You want to either have

both off, or only one on at a time to prevent making a short

circuit. In Arduino code we made sure that this wouldn’t

happen by having functions which made sure to turn off the relays that are not being used. The

concept is shown best with the picture that we provided. [​ link to picture​] Each cable of a motor

would have it’s own relay terminal, where the power from the batteries would go to every single

first terminal of the relays. And then the ground would always be the last pin of the relays, this

http://www.robmeyerproductions.com/tt4.gif

8

made the overall product look very clean and it was very easy to tell which cable is what when

looking at how they are connected.

 This wiring caused a bit of issue, since the motor cables were so far, so we had to cut out a

part of the RC car’s plastic frame to make sure we can get them through.While doing this one of

the cables was accidently cut, and other had a exposed part of it. So one was taped, while the

other was removed and replaced (the green cable, notice how different it is from the all the other

original). By uck the previous screw holes of the RC car lined up with the relay module, so it

was very easy to screw in with the screws that were taken out earlier.

Distance Sensor / Buzzer

The sensor was really easy to

hook up, the only problem with it later

was the library that we tried to use with

it was using the same interrupts as the

code for the IR receiver [Motor] . We

made sure the motion sensor would be

as close to the front of the car as possible, to give us the best possible reading on where objects

might be. After playing around and trying to make a bracket to hold in place I resulted to just

using super glue and making the sensor stationary in the front, as I didn’t superglue the actual

sensor but rather the little cables that hold the pins inside of them (which have a plastic casing).

 The motion sensor will keep polling the distance of how far things are, and when that

distance reaches less than 5 cm, a buzzer on the back of the Rc car will go off [Buzzer]. The

buzzer emits a single tone, and keeps making a noise as long as the object is still in front of the

9

car. The car will not move at all while there is an object in the way, as all relays will be turned

off completely, so nothing can be done. The hope was that the RC car would manually back up,

but this proved to be much more harder to implement than initially thought. This is the reason we

had abandoned that idea, and focused on other parts for the time being.

Finishing the car

When all the parts were put together, we made sure the car had enough power to run the

motors. For this we just had used the battery pack that came with, which takes in 6 x AA

batteries. This ran at 10 volts, and the perfect amount of amps to run the wheels, which meant

that the motors would run at the speed that they were meant for. To power the arduino for the RC

car we wanted to use a standard 9 volt battery, but for some reason using it caused the relays to

not trigger properly. Instead we decided to use a small USB power bank (one that I have

received from UIC) which gave enough power to make everything work properly. The car has

it’s own suspension, which makes controlling it a bit more difficult. But at the same time

removing it makes it completely unusable.

We have experimented with the idea of having the tires be in a fixed place , by taping the

blue “wings” of the car together and making them as stiff as possible, but this resulted in

removing all the room we had in the back for the batteries and the components that resided there.

So we decided to just let it be and give as much room to the components of the car as possible,

since they are most of the bulk of the actual car. We took some measures to making things fit

better: The relay board is screwed in directly into the car, making sure it won’t go anywhere.

Then the arduino itself is inside of a wooden encasing, to avoid any outside things that may

10

cause it problems, along with a strip of velcro that connects the top of the relay board to the

bottom of the arduino.

Making the remote

Starting out the controller remote, we had used

a breadboard layout to create a controller feel with

buttons for different actions being sent to the RC-Car.

We first wanted to utilize the potentiometer which

would create ranges of speed and reverse functionality.

Since the potentiometer range is from 0 to 1024. This

creates an influx of large amounts of numbers to keep track of. To tackle this problem, we

decided to take the values received by the potentiometer divided by 4. This reduced the scale of

the potentiometer to 25% (0 to 256). Then further break down the scale to 5 sections in which it

was broken into: reverse, stay idle, slow speed, medium speed, maximum speed. We also utilized

a two button system in which one button would be used for left turn, which would shut off the

motor for left side, and keep the motor running right. And also for the right button would have

the right motor shut off and have the left motor running.

 For the signaling, originally we had decided to use a network card, but discarded the idea

for its complexity and the need for a network to function and the battery drainage wouldn't be the

best idea for a small scale project. So we decided to go with IR signaling which is very cost

effective, is more efficient than Bluetooth, and fit in the scope of this project. The idea is that the

IR led will send hexadecimal signals to the RC car’s receiver and depending on the the signal

11

received, the RC-Car will react to programing of the arduino connected to the car. The remote

will play the role of emitter and the car will play the role of the receiver. [IR Signaling 3] So if

the user presses right button and the remote sends a signal 0xFF6897, then the car should

recognize this and look into its programing to see that this signal means to turn off right motor

and the left motor to continue. The remote’s power supply during testing was run off USB,

however to keep it wireless free, we are using a 9V battery enclosure which is having the arduino

regulating to 5V since that is the appropriate amount of power needed. [IR Signaling 1]

How IR Signaling Works

Emitter

Receiver

If the left button is being pressed, the IR led will send a signal of 0xFF6897 to the

RC-Car. The car will recognize this signal through its programing and carry out the appropriate

instructions to make the car do a left turn. [IR Signaling 2]

12

Final Remote (+ instructions)

For the final product of the remote, we had changed the

schematics dramatically since we did not want to utilize the

potentiometer anymore. So we implemented a 5-button system

in which you can see to the right. The black button is a reset

button to clear any instructions for the RC-Car so it can clear

and reset the relays and motors. The two buttons in the middle

are the Up and down, which allows the car to go in a straight

line or reverse. The two Yellow buttons are for turning left or

right. So when the left button pressed, it will shut off the motor

on the left side, in which if kept held, the car will just go counter-clockwise and vise versa for

the right button. For the IR led, the first two leds weren't sending signals

so we scavenged an old stereo remote for its IR Led emitter. This solved

our problem because it was sending proper signals and the receiver was

actually receiving it, which we monitored through serial communication.

[IR Signaling 4]

Problems that we encountered

-We had implemented the motion detector library and remote IR library in which they

both share the same timer class which gives errors in conflict.

13

-The first IR LED was having problems sending hexadecimal signals to the RC-Car.

However, when we use a normal LED it does show that the blinking does represent hexadecimal

signals, but does not react with the IR LED.

-Implementing the speed from the potentiometer breaking it up in different ranges causes

an influx in sending signals. So what speed will the car be when I press the button.

-The car that we ended up working with was not the original one we intended to work

with, which slowed us down, so to remedy this we got a different RC car which met the criteria

we wanted.

-One issue that we had to deal with was the resistor on the IR led. The IR led requires 100

ohm resistor, however the only size resistors that we had was 200 ohm and 1K ohm resistors. To

fix this, we put two 200 ohm resistors in parallel which split the resistor to the led giving it the

required resistance.

-One of the receivers stop working on us completely (might have shorted out, or

something, still uncertain) which made it that we had to find another one, which we did by

finding an old VCR with a remote controler. The receiver looked different, but it also had 3 pins

and was working with the code we had, so thankfully no changes had to be made.

-After hooking up a transistor with a potentiometer, I could get a small motor to run, but

ran into issues when trying to run the big motors that were in the blue car. It seems that 5v, and

at the current I was supplying was not enough. I needed more power. So, I brought out the good

old power supply to do more testing. I changed the input voltage from Arduino to the power

supply, and same with the ground. Then I did the same thing and hoped more power would be

given to the motor inside the RC car. And then the small transistor blew up in smoke. At least

14

nothing else was damaged. I learned my lesson, if you want to give more power, you need a

better/bigger transistor. Lucky enough I horde many old parts electronics, so it didn’t take me

long to find one suitable for this task.

Thoughts about expansion

-The remote’s efficiency definetly can be improved if we created sleep mode function in

which if the remote has been idle for longer than 5 seconds, create an interruption in which the

remote won’t be waiting for a button to be pressed so saving it power and making the product

more efficient. Same can be applied to the RC-Car’s receiver. If the receiver does not get a signal

for 30 seconds, we can put into sleep mode, so it is not constantly waiting for instructions.

-We could have also implemented acceleration in which the potentiometer would have

played a great role in. Higher on the dail, the faster the speed. However for this project, we

decided to keep the speed constant since we do not want to send conflicting signals which could

possibly short out the RC-Car.

-The implementation of a second Ultrasonic Distance sensor to the rear view of the

RC-Car. This would allow the car to stop when reversing from damaging itself. This would be

great step toward autonomous driving if we put 4 or more sensors on the RC car since we can

analyze the surrounding properly and allows self driving mode where the car would know how to

react if obstacles or collisions are possible.

-Another possible implementation we could have done is create a camera drone. In which

we would need signaling via WIFI since that would having the lowest latency and higher

frequency. This would allow us to control the drone from the comfort of our computer.

15

Other/similar works of interest

We as a group are very eager about drone technology and how such technology is a great

field for automation, military use, and simply commercial use to make lives easier. Drones can

range from military type planes to a glamorized vacuum cleaner Roomba. This project showed

us an insight of the possibilities of companies like Tesla working on self driving cars. Companies

like Google that have their google map layout based on the pictures that their automated cars

have taken. This is an inspiring field that we hope to be a part of one day.

16

References

Distnace Sensor - ​http://howtomechatronics.com/tutorials/arduino/ultrasonic-sensor-hc-sr04/

 ​http://www.instructables.com/id/Ultrasonic-Range-detector-using-Arduino-and-the-SR/

Remote - ​https://learn.sparkfun.com/tutorials/ir-control-kit-hookup-guide

Motors -

1.​https://create.arduino.cc/projecthub/licensedGeek/controlling-a-dc-motor-from-an-ardui

no-101-board-f4954b

2.​https://learn.adafruit.com/adafruit-arduino-lesson-13-dc-motors/parts

3.​http://www.instructables.com/id/Controlling-AC-light-using-Arduino-with-relay-modu/

4.​http://www.robmeyerproductions.com/tt4.gif

5.​http://www.the12volt.com/installbay/forum_posts.asp?tid=114347

Buzzer -​ ​http://www.instructables.com/id/How-to-use-a-Buzzer-Arduino-Tutorial/

IR Signaling

 1. ​http://garagelab.com/profiles/blogs/tutorial-arduino-ir-sender-and-receiver

 2. ​https://learn.adafruit.com/using-an-infrared-library/sending-ir-codes

 3. ​https://learn.adafruit.com/using-an-infrared-library/hardware-needed

 4. ​https://learn.sparkfun.com/tutorials/ir-communication

 5. ​http://www.instructables.com/id/The-Easiest-Way-to-Use-Any-IR-Remote-with-Ardiuno/

http://www.instructables.com/id/The-Easiest-Way-to-Use-Any-IR-Remote-with-Ardiuno/
http://www.instructables.com/id/How-to-use-a-Buzzer-Arduino-Tutorial/
https://learn.adafruit.com/using-an-infrared-library/hardware-needed
https://learn.sparkfun.com/tutorials/ir-control-kit-hookup-guide
http://www.instructables.com/id/Controlling-AC-light-using-Arduino-with-relay-modu/
http://howtomechatronics.com/tutorials/arduino/ultrasonic-sensor-hc-sr04/
https://learn.sparkfun.com/tutorials/ir-communication
https://learn.adafruit.com/using-an-infrared-library/sending-ir-codes
http://www.instructables.com/id/Ultrasonic-Range-detector-using-Arduino-and-the-SR/
http://www.the12volt.com/installbay/forum_posts.asp?tid=114347
https://create.arduino.cc/projecthub/licensedGeek/controlling-a-dc-motor-from-an-arduino-101-board-f4954b
http://www.robmeyerproductions.com/tt4.gif
https://create.arduino.cc/projecthub/licensedGeek/controlling-a-dc-motor-from-an-arduino-101-board-f4954b
https://learn.adafruit.com/adafruit-arduino-lesson-13-dc-motors/parts
http://garagelab.com/profiles/blogs/tutorial-arduino-ir-sender-and-receiver

